A Model Zoo for parameter files used for image registration with Elastix, SimpleElastix or ITKElastix in various domains. Parameter files can be uploaded via the GitHub repository.
intra-subject; translational registration; mutual information
registration of interventional x-ray data to 3D CT for motion estimation, patient positioning or image guidance
inter patient; rigid and B-spline transformation, advanced mean square and normalized correlation metrics
intra patient; rigid + B-spline transformation; several B-pline knot spacings; synthesized head and neck phantoms
intra-subject, inter-subject; mono-modal and multi-modal; rigid, affine and B-spline transformations; mean square difference, normalized correlation, mutual information
intrapatient (sometimes intra-sheep); B-spline transformation; normalized correlation
Intrapatient, B-spline transformation, mutual information, rigidity penalty
intra-subject; multi-image; affine (Mutual Information) + multi-image B-spline transformation (Mutual Information and mean square difference);
motion estimation; (cyclic) B-spline transformation; variance over last dimension
intrapatient; rigid + B-spline transformation; localized mutual information combined with bending energy penalty
intrapatient; B-spline transformation; mutual information
intra-subject; B-spline transformation; Mattes mutual information
intra-subject; multi-resolution (4), rigid, Mutual Information metric (Mattes) with Adaptive Stochastic Gradient Descent optimizer
Head-neck, lung and breast cancer patients acquired between 2016-2018. ...
intra patient; rigid + B-spline transformation; mutual information, multi parametric mutual information
intrapatient; rigid + B-spline transformation; mutual information
intrapatient; Multi B-spline transformation; sliding motion
intra-subject respiratory motion; B-spline transformation
intrapatient; B-spline transformation; several similarity metrics
intrapatient; B-spline transformation; mutual information
interpatient; affine + B-spline transformation; mutual information
intra-mouse; B-spline transformation; combination of normalized correlation and the Euclidean distance metric
Name | Image Properties | Description | Paper |
---|---|---|---|
Par0037 | Chest/Lung CT | intra-subject; translational registration; mutual information | You Zhang, Fang-Fang Yin, Irina Vergalasova, Lei Ren, "Pilot Clinical Study of Orthogonal-view Phase-matched Digital Tomosynthesis for Lung Tumor Localization" _in preparation_ 2015] |
Par0013 | Head & Neck 2D 3D CT X-Ray | registration of interventional x-ray data to 3D CT for motion estimation, patient positioning or image guidance | I.M.J. van der Bom, S. Klein, M. Staring, R. Homan, L.W. Bartels, J.P.W. Pluim, "Evaluation of optimization methods for intensity-based 2D-3D registration in X-ray guided interventions", in: SPIE Medical Imaging: Image Processing, SPIE Press, vol. 7962, pp. 796223-1 - 796223-15, 2011. |
Par0019 | Head & Neck 3D CT | inter patient; rigid and B-spline transformation, advanced mean square and normalized correlation metrics | V. Fortunati, R.F. Verhaart, F. van der Lijn, W.J. Niessen, J.F. Veenland, M.M. Paulides and T. van Walsum, Tissue segmentation of head and neck CT images for treatment planning: A multiatlas approach combined with intensity modeling, Medical Physics 40(7), 071905 (2013)][1] |
Par0028 | Head & Neck 3D CT | intra patient; rigid + B-spline transformation; several B-pline knot spacings; synthesized head and neck phantoms | Charlotte L. Brouwer, Roel G.J. Kierkels, Aart A. van 't Veld, Nanna M. Sijtsema, and Harm Meertens, The effects of computed tomography image characteristics and knot spacing on the spatial accuracy of B-spline deformable image registration in the head and neck geometry, Radiation Oncology 2014, 9:169 ](Brouwer_et_al._-_2014_-_The_effects_of_computed_tomography_image_characteristics_and_knot_spacing_on_the_spatial_accuracy_of_B-pline_def.pdf) |
Par0035 | Brain Abdomen Chest/Lung 3D 4D CT Ultrasound MRI | intra-subject, inter-subject; mono-modal and multi-modal; rigid, affine and B-spline transformations; mean square difference, normalized correlation, mutual information | Y. Qiao, B. van Lew, B.P.F. Lelieveldt and M. Staring, "Fast Automatic Step Size Estimation for Gradient Descent Optimization of Image Registration," IEEE Transactions on Medical Imaging, in press. |
Par0011 | Chest/Lung 3D CT | intrapatient (sometimes intra-sheep); B-spline transformation; normalized correlation | Marius Staring, Stefan Klein, Johan H.C. Reiber, Wiro J. Niessen and Berend C. Stoel, Pulmonary Image Registration With `elastix` Using a Standard Intensity-Based Algorithm, EMPIRE10 workshop at MICCAI. |
Par0059 | Pelvis 3D CT MRI | Intrapatient, B-spline transformation, mutual information, rigidity penalty | Florkow et al. (2019), Deep learning-based MR-to-CT synthesis: the influence of varying gradient echo-based MR images as input channels, under submission |
Par0044 | Brain Cardiac CT | intra-subject; multi-image; affine (Mutual Information) + multi-image B-spline transformation (Mutual Information and mean square difference); | None |
Par0012 | Carotid Cardiac Chest/Lung 3D 4D CT MRI Ultrasound | motion estimation; (cyclic) B-spline transformation; variance over last dimension | Nonrigid registration of dynamic medical imaging data using nD+t B-splines and a groupwise optimization approach, C.T. Metz, S. Klein, M. Schaap, T. van Walsum and W.J. Niessen, Medical Image Analysis, in press](http://dx.doi.org/10.1016/j.media.2010.10.003) |
Par0023 | Head & Neck CT MRI PET | intrapatient; rigid + B-spline transformation; localized mutual information combined with bending energy penalty | S. Leibfarth , D. Mönnich, S. Welz, C. Siegel, N. Schwenzer, H. Schmidt, D. Zips, D. Thorwarth, A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning, Acta Oncologica 52, 1353-1359 (2013) |
Par0008 | Chest/Lung 3D CT | intrapatient; B-spline transformation; mutual information | K. Murphy, B. van Ginneken, J.P.W. Pluim, S. Klein, and M. Staring, Semi-Automatic Reference Standard Construction for Quantitative Evaluation of Lung CT Registration, in MICCAI, ser. Lecture Notes in Computer Science, vol. 5242, 2008, pp. 1006 – 1013. |
Par0049 | Chest/Lung 3D CT | intra-subject; B-spline transformation; Mattes mutual information | Sokooti, et al. (2017), Accuracy Estimation for Medical Image Registration Using Regression Forests. |
Par0043 | Prostate Pelvis 3D CT MRI | intra-subject; multi-resolution (4), rigid, Mutual Information metric (Mattes) with Adaptive Stochastic Gradient Descent optimizer | Maspero M, et al. (2017), Quantification of confounding factors in MRI-based dose calculations as applied to prostate IMRT. Phys Med Biol. 62(3) |
Par0058 | Head & Neck Chest/Lung CT | Head-neck, lung and breast cancer patients acquired between 2016-2018. ... | Maspero M, Houweling AC, Savenije MH, van Heijst TC, Verhoeff JJ, Kotte AN, van den Berg CA. A single neural network for cone-beam computed tomography-based radiotherapy of head-and-neck, lung and breast cancer. Physics and Imaging in Radiation Oncology. 2020 Apr 1;14:24-31. doi:[https://doi.org/10.1016/j.phro.2020.04.002](https://doi.org/10.1016/j.phro.2020.04.002); |
Par0027 | Head & Neck CT MRI PET | intra patient; rigid + B-spline transformation; mutual information, multi parametric mutual information | V. Fortunati, R.F. Verhaart, F. Angeloni, A. van der Lugt, W.J. Niessen, J.F. Veenland, M.M. Paulides and T. van Walsum, Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning, Int. J. Radiation Oncology Biology and physics 90, 85-93 (2014) |
Par0004 | Chest/Lung 3D CT | intrapatient; rigid + B-spline transformation; mutual information | M. Staring, S. Klein and J.P.W. Pluim, "A Rigidity Penalty Term for Nonrigid Registration," Medical Physics, vol. 34, no. 11, pp. 4098 - 4108, November 2007. |
Par0016 | Chest/Lung 3D CT | intrapatient; Multi B-spline transformation; sliding motion | V. Delmon, S. Rit, R. Pinho, and D. Sarrut, "Direction dependent B-splines decomposition for the registration of sliding objects", Proceedings of the Fourth International Workshop on Pulmonary Image Analysis, Toronto, Canada, pp. 45–55, 09/2011.][1] |
Par0054 | Chest/Lung 3D CT | intra-subject respiratory motion; B-spline transformation | Christopher L. Guy, Elizabeth Weiss, Gary E. Christensen, Nuzhat Jan, and Geoffrey D. Hugo, "CALIPER: A deformable image registration algorithm for large geometric changes during radiotherapy for locally advanced non-small cell lung cancer," Medical Physics, 45 (6), June 2018. doi.org/10.1002/mp.12891 |
Par0015 | Chest/Lung 3D CT | intrapatient; B-spline transformation; several similarity metrics | M. Staring, M.E. Bakker, J. Stolk, D.P. Shamonin, J.H.C. Reiber, and B.C. Stoel, "Towards Local Progression Estimation of Pulmonary Emphysema using CT", Medical Physics, vol. 41, no. 2, pp. 021905-1 - 021905-13, 2014. |
Par0007 | Chest/Lung 4D CT | intrapatient; B-spline transformation; mutual information | K. Ding, J.E. Bayouth, J.M. Buatti, G.E Christensen, and J.M. Reinhardt, 4DCT-Based Measurement of Radiation Induced Changes in Pulmonary Function, submitted. |
Par0003 | Chest/Lung 3D CT | interpatient; affine + B-spline transformation; mutual information | S. Klein, M. Staring, K. Murphy, M.A. Viergever, J.P.W. Pluim, "`elastix`: a toolbox for intensity based medical image registration," IEEE Transactions on Medical Imaging, vol. 29, no. 1, pp. 196-205, 2010. |
Par0014 | 3D CT | intra-mouse; B-spline transformation; combination of normalized correlation and the Euclidean distance metric | Baiker (2011), Automated Registration of Whole-Body Follow-Up MicroCT Data of Mice [1] |
© 2020 Viktor van der Valk