A Model Zoo for parameter files used for image registration with Elastix, SimpleElastix or ITKElastix in various domains. Parameter files can be uploaded via the GitHub repository.
registration of interventional x-ray data to 3D CT for motion estimation, patient positioning or image guidance
inter patient; rigid and B-spline transformation, advanced mean square and normalized correlation metrics
intra patient; rigid + B-spline transformation; several B-pline knot spacings; synthesized head and neck phantoms
intrapatient; rigid + B-spline transformation; localized mutual information combined with bending energy penalty
Head-neck, lung and breast cancer patients acquired between 2016-2018. ...
intra patient; rigid + B-spline transformation; mutual information, multi parametric mutual information
Intapatient, rigid+ affine+ b-spline transformation, mutual information
Name | Image Properties | Description | Paper |
---|---|---|---|
Par0013 | Head & Neck 2D 3D CT X-Ray | registration of interventional x-ray data to 3D CT for motion estimation, patient positioning or image guidance | I.M.J. van der Bom, S. Klein, M. Staring, R. Homan, L.W. Bartels, J.P.W. Pluim, "Evaluation of optimization methods for intensity-based 2D-3D registration in X-ray guided interventions", in: SPIE Medical Imaging: Image Processing, SPIE Press, vol. 7962, pp. 796223-1 - 796223-15, 2011. |
Par0019 | Head & Neck 3D CT | inter patient; rigid and B-spline transformation, advanced mean square and normalized correlation metrics | V. Fortunati, R.F. Verhaart, F. van der Lijn, W.J. Niessen, J.F. Veenland, M.M. Paulides and T. van Walsum, Tissue segmentation of head and neck CT images for treatment planning: A multiatlas approach combined with intensity modeling, Medical Physics 40(7), 071905 (2013)][1] |
Par0028 | Head & Neck 3D CT | intra patient; rigid + B-spline transformation; several B-pline knot spacings; synthesized head and neck phantoms | Charlotte L. Brouwer, Roel G.J. Kierkels, Aart A. van 't Veld, Nanna M. Sijtsema, and Harm Meertens, The effects of computed tomography image characteristics and knot spacing on the spatial accuracy of B-spline deformable image registration in the head and neck geometry, Radiation Oncology 2014, 9:169 ](Brouwer_et_al._-_2014_-_The_effects_of_computed_tomography_image_characteristics_and_knot_spacing_on_the_spatial_accuracy_of_B-pline_def.pdf) |
Par0023 | Head & Neck CT MRI PET | intrapatient; rigid + B-spline transformation; localized mutual information combined with bending energy penalty | S. Leibfarth , D. Mönnich, S. Welz, C. Siegel, N. Schwenzer, H. Schmidt, D. Zips, D. Thorwarth, A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning, Acta Oncologica 52, 1353-1359 (2013) |
Par0058 | Head & Neck Chest/Lung CT | Head-neck, lung and breast cancer patients acquired between 2016-2018. ... | Maspero M, Houweling AC, Savenije MH, van Heijst TC, Verhoeff JJ, Kotte AN, van den Berg CA. A single neural network for cone-beam computed tomography-based radiotherapy of head-and-neck, lung and breast cancer. Physics and Imaging in Radiation Oncology. 2020 Apr 1;14:24-31. doi:[https://doi.org/10.1016/j.phro.2020.04.002](https://doi.org/10.1016/j.phro.2020.04.002); |
Par0027 | Head & Neck CT MRI PET | intra patient; rigid + B-spline transformation; mutual information, multi parametric mutual information | V. Fortunati, R.F. Verhaart, F. Angeloni, A. van der Lugt, W.J. Niessen, J.F. Veenland, M.M. Paulides and T. van Walsum, Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning, Int. J. Radiation Oncology Biology and physics 90, 85-93 (2014) |
Par0060 | Abdomen Head & Neck 2D MRI | Intapatient, rigid+ affine+ b-spline transformation, mutual information | Terpstra ML, Maspero M, D'Agata F, Stemkens B, Intven MP, Lagendijk JJ, Van den Berg CA, Tijssen RH. Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy. Physics in Medicine & Biology. 2020 July 30; 66(15). doi:[https://doi.org/10.1088/1361-6560/ab9358](https://doi.org/10.1088/1361-6560/ab9358). |
© 2020 Viktor van der Valk